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abStRact

Believable agents designed for long-term interaction with human users need to adapt to them in a way 
which appears emotionally plausible while maintaining a consistent personality.  For short-term interac-
tions in restricted environments, scripting and state machine techniques can create agents with emotion 
and personality, but these methods are labor intensive, hard to extend, and brittle in new environments.  
Fortunately, research in memory, emotion and personality in humans and animals points to a solution 
to this problem.  Emotions focus an animal’s attention on things it needs to care about, and strong emo-
tions trigger enhanced formation of memory, enabling the animal to adapt its emotional response to the 
objects and situations in its environment.  In humans this process becomes reflective: emotional stress 
or frustration can trigger re-evaluating past behavior with respect to personal standards, which in turn 
can lead to setting new strategies or goals.  To aid the authoring of adaptive agents, we present an 
artificial intelligence model inspired by these psychological results in which an emotion model triggers 
case-based emotional preference learning and behavioral adaptation guided by personality models.  
Our tests of this model on robot pets and embodied characters show that emotional adaptation can 
extend the range and increase the behavioral sophistication of an agent without the need for authoring 
additional hand-crafted behaviors.
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intRoduction

When we see a pet we’ve met before, we recall 
not just its name and temperament but how our 
interactions with it made us feel.  We feel happy 
when we see the dog we had fun playing with, 
and feel sour about the cat that shocked us with 
its hiss. And just as we learn from them, they 
learn from us; the dog, remembering its happiness 
upon playing with us, may seek us out when we 
are down; and the cat, remembering our shocked 
reaction when it hissed, may avoid us, or be 
more cautious with its anger in the future.  Pets 
don’t need to be ‘configured’ to live with us, and 
neither do we: all we need is the ability to react 
emotionally to our situations, a memory for our 
past emotional states, and the ability to let those 
recalled emotions color our current emotional 
state and guide our behaviors appropriately.  We 
argue that robots and synthetic characters should 
have the same ability to interpret their interactions 
with us, to remember these interactions, and to 
recall them appropriately as a guide for future 
behaviors, and we present a working model of 
how this can be achieved.

Of course, humans are more complicated than 
pets; we have not just emotions but also ideals 
for our behavior, and can modify our reactions 
and plans when they violate our ideals.  We may 
snarl back at the hissing cat, but that outburst 
of emotion can make us reconsider when we 
should show anger. Even if we do not reconsider 
at first, if we see the same cat multiple times we 
may eventually be prompted to figure out why it 
continues to try to enter our new home, to realize 
it was probably abandoned, and to change our 
routines to leave food for it – turning a hissing 
cat into a new companion.  It may seem a tall 
order make robots have this kind of flexibility – 
but we argue it is possible by using emotion to 
trigger behavior revision guided by a personality 
model, and we present a working model of how 
it can be achieved.

In this chapter, we review efforts to build agents 
with believable personalities, point out problems 
particular to making these personalities convinc-
ing over long-term interactions with human users, 
and discuss research in cognitive science into the 
mechanisms of memory, emotion, and personality.  
Based on these psychological results, we present 
a method for building believable agents that uses 
emotion and memory to adapt an agent’s person-
ality over time.  We then present two case stud-
ies illustrating this idea, the first demonstrating 
emotional long term memory in a robot, and the 
second demonstrating emotion-driven behavioral 
updates in an embodied character.  Finally, we 
conclude with lessons learned.

backgRound

What kind of agents need memory, 
emotion, and Personality models?

In our work we are interested in affective systems: 
robots and agents designed to display, respond to, 
or make use of emotional states, in particular those 
which interact with humans over a long period of 
time in relatively unconstrained settings.  Research 
into what makes characters appear believable 
indicates that changing and expressing emotion 
are key to maintaining believability over time 
(Loyall, 1997).  We argue that using explicit emo-
tion models integrated into an agent’s memory but 
guided by the agent’s personality model can aid 
the development of agents for long term interac-
tion; to explain why, we will briefly review some 
popular techniques for creating believable agents 
and some typical problems that can arise.

Techniques for Creating Agent 
Personalities

Entertainment robots and embodied characters 
typically are designed to have distinctive person-
alities which affect how they behave towards their 
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human user or how they act within the virtual 
world of a game.  At first blush, such agents do 
not need a complex model of emotion: instead, 
simple reactions can trigger expressive behaviors 
that communicate to a user the impression that 
they are interacting with a real character with 
an inner emotional life (Johnston and Thomas, 
1995, Paiva, 2005; Standifer, 1995).  For example, 
a simple finite state automaton could be used 
to make an enemy approach, make threatening 
gestures until wounded, and then scream in fear 
and run away.

While finite state automata are easy to develop, 
they are predictable. Over long game sessions, a 
character’s static behavioral repertoire may result 
in repetitive behavior that hurts believability 
(Saltzman, 1999).  Therefore, many developers of 
computer games and robotic toys have turned to hi-
erarchical, probabilistic and fuzzy state machines 
(Schwab, 2004).  The advantage of these systems 
is that layered control supports sophisticated be-
haviors, and probabilistic transitions makes the 
actual behavior of the agent nondeterministic, 
less predictable, and more realistic.

Other game developers have turned to scripting 
languages which allow arbitrarily sophisticated 
behaviors (Millington, 2006).  However, creating 
characters using scripting languages or fuzzy state 
machines can be very labor intensive.  Computer 
game manufacturers typically employ dozens 
of artists and engineers to perfect very simple 
characters (for examples, see the Postmortems in 
Game Developer Magazine, e.g., Huebner, 2000; 
Spector, 2000, Ohlen et al., 2001, etc.).

Challenges in Creating Agent 
Personalities

When authoring a character’s behavior set, it is 
hard to imagine and plan for all possible scenarios 
it might encounter; despite extensive play-testing, 
any character may ultimately “break”.  Incorpo-
rating knowledge representation and planning 
techniques can enable an agent’s behavior to 

become more flexible in novel situations, but this 
too can require extensive programming effort 
(Mateas and Stern, 2003), and it does not guar-
antee success: when an agent’s behavior fails to 
achieve their desired purpose, most characters are 
unable to identify the failure and will continue 
the ineffective behavior. 

A few game developers have tried incorpo-
rating explicit emotional models to improve the 
believability of their agents, which can effectively 
communicate to a user the impression that they 
are interacting with a real character with an inner 
emotional life (Reilly, 1996). Notably, the char-
acters in The Sims (Maxis, 2000) incorporated 
explicit “motivational” states, which could be 
satisfied by objects in the environments which 
were labeled with the drives that they could satisfy.  
This system meant that a character who was hun-
gry would naturally turn to a nearby refrigerator 
without the need for explicit programming of that 
behavior (Woodcock, 2000b).

Another solution is to make characters adapt, 
but game developers tend to avoid adaptive agents 
because it makes playtesting difficult and debug-
ging user problems nearly impossible (Woodcock 
2000a; Tozour, 2002). There are exceptions; nota-
bly, the characters in Creatures (Cyberlife, 1997) 
could be trained through emotional interactions; 
however, these characters had deliberately limited 
lifespans to encourage player identification with 
them, so we cannot say how this model would have 
fared over longer periods (Champanard, 2007).

Exploiting Adaptation for Better Agents

Based on these tradeoffs—simpler systems are 
easy to develop but predictable and brittle, more 
complicated agents are more flexible but harder 
to author, and adding adaptation to agents makes 
them more convincing but less controllable—
we argue that a better way to achieve long-term 
believability is to introduce explicit models of 
emotion, memory and personality control, based 
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on how real human and animals emote, adapt, and 
maintain their personalities. 

The approach we take is cognitively grounded 
artificial intelligence: we start from the premise 
that constructs like memory, emotion and person-
ality are real phenomena that exist in humans, and 
that to emulate them we need to understand pre-
cisely what these phenomena are.  However, once 
that understanding is established, development of 
artificial intelligence control systems for agents 
may simplify these psychological models signifi-
cantly in an attempt to make the implementation 
of these systems easier and more efficient.

theories of memory, emotion and 
Personality in cognitive Science

The Nature of Emotion

Current psychological theories model emotion 
in humans and animals as three interrelated pro-
cesses: physiological responses, overt behaviors, 
and conscious feelings that occur in response 
to events of potential relevance (Gluck, 2008); 
many researchers postulate that the functional 
role of emotions is to determine what problems 
are currently important and to focus the agent’s 
mind and actions on them (e.g., LeDoux, 1996; 
Damasio, 2000; Minsky, 2007).  Simon (1983) 
points out that the environment presents many 
challenges — food, safety, sex, etc. — that can-
not all be met at once, and that emotions provide 
a way to shift our focus, allowing us to drop our 
search for food in the face of imminent death 
within the jaws of a tiger. 

Frijda (1987) argues along similar lines that 
agents have a variety of concerns, and when threats 
to our concerns become pressing enough, they 
interrupt our thoughts and actions — even if we 
have not been attending to them (e.g., Ohman et 
al 2000, Winkielman and Berridge, 2004, Ruys 
& Stapel, 2008). This can cause an immediate 
behavioral response, but more importantly it 
can lead the agent to change its stance towards 

the environment, switching to a new mode of 
behavior that leads to the selection of new goals, 
plans, and actions.

Memory and Learning

Memory refers to an agent’s capacities to modify 
its behavior based on experience. There is not 
enough space for us to discuss the extensive 
literature of memory retrieval; for more infor-
mation see (Anderson, 2000, Tulving & Craik, 
2000; Purdy et al., 2001; Gluck, 2008).  Types of 
memory include procedural memory for skills and 
declarative memory for facts, which includes asso-
ciative memory connecting stimuli with responses, 
semantic memory for general concepts divorced 
from specific stimuli, and episodic memory for 
when and where specific facts were learned (for 
a review see McGaugh, 2003).

Episodic memories are not taken as static 
“snapshots”: most of us are familiar of with learn-
ing a friend’s new phone number, only to forget 
it later and dial their old number.  Under normal 
circumstances, memories are consolidated over 
a period that takes somewhere between hours 
and decades (McGaugh, 2007, Haist et al., 2001).  
Furthermore, memories are reconstructive, con-
tinually evolving as missing details are filled in 
on recall (Bartlett, 1932).

The Relationship of Memory and 
Emotion

Memories are affected by emotion: we often have 
heightened recollection of events associated with 
charged emotional events like national disasters.  
Even very mildly emotional events, such as reading 
emotionally charged stories, can create memo-
ries stronger and more detailed than memories 
of emotionally neutral events (McGaugh, 2003; 
Gluck et al., 2008), with the caveat that when 
emotional stress becomes so great that it interferes 
with cognitive functioning, memory performance 
drops off again (Benjamin et al., 1981).
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Emotion’s effect on memory appears to begin 
when brain structures responsible for emotion, 
such as the amygdala, detect an emotional event 
and communicate with brain structures respon-
sible for consolidating short term memory into 
long term memory, such as the hippocampus.  
When the emotion centers detect emotional events, 
they simultaneously excite nearby brain regions 
and release stress hormones that prepare the body 
for action.  These stress hormones feed back into 
the emotion centers of the brain themselves, and 
the combination of the initial excitation and the 
subsequent feedback strengthens the formation of 
memories in the consolidation regions (McGaugh 
2003, Gluck et al. 2008).

Personality and Self-Regulation

Personality refers to distinctive yet stable indi-
vidual differences in behavior and cognition.  For 
our purposes we are most interested not just in the 
content of a person’s personality, but in the self-
regulation mechanisms by which they maintain it.  
When we choose not to eat that cookie because 
we’re on a diet, congratulate ourselves on success-
fully abstaining, or berate ourselves for eating the 
second one, we are simultaneously comparing our 
performance with respect to a standard (a cogni-
tive act) and evaluating how we measure up in a 
positive or negative way (an emotional act).  Based 
on how good we are at our diets (our prospects of 
success), we may decide to eat no more than one 
cookie a week (setting a goal).

These four elements — personal standards 
which can be used to evaluate our behavior, emo-
tional evaluation of our actions with respect to our 
standard, evaluating our prospects of success, and 
setting goals — appear key to our regulation of 
our behavior (Caprara & Cervone 2000, Minsky 
2007).  However, we are not constantly evaluat-
ing our own performance; sometimes it takes 
a disappointing surprise on the scale to realize 
we’ve failed at our diet.  Self-regulation can lead 
to changing our goals, re-evaluating our prospects 

of success, or even altering our standards; but it 
is also a conscious process which is more likely 
to engage when we experience some disruption, 
such as failing at a task, receiving feedback, or 
becoming socially self-conscious (Caprara & 
Cervone, 2000).

implementation of memory, emotion 
and Personality Models in Artificial 
intelligence Systems

These results seem to show that emotion plays a 
key role not just in alerting us about the need for 
action, but also in determining what we remem-
ber and even when we should change.  But these 
psychological results do not directly translate 
into control systems for an affective robot or an 
embodied character; to take advantage of these 
results we must exploit (or develop) implementable 
artificial intelligence models of memory, emotion 
and personality.

Modeling Emotion in Intelligent 
Systems

Two popular emotion models in artificial intelli-
gence are multiple concerns models and cognitive 
evaluation models.

Multiple concerns models map emotion to 
competing systems detecting events of importance 
to an agent.  Features in perception or cognition 
act as triggers for concerns, which in turn can 
trigger emotions, or behavioral modes, that change 
how the agent selects its behaviors.  The PEPE 
system we describe later was a multiple concerns 
model based on ideas from Simon (1983) and 
Frijda (1987).  A similar model was implemented 
by Velasquez (1997, 1998) based on a synthesis 
of ideas from Ekman (1992), Izard (1991), and 
Johnson-Laird and Oately (1992).

Cognitive evaluation models map emotions to 
a hierarchy of evaluations of physical and mental 
conditions that can affect an agent.  Ortony, Clore 
and Collins proposed a cognitive evaluation model 
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(1988) in which emotions consist of valenced 
reactions to the outcome of events, the actions of 
agents, and the properties of objects, especially 
with respect to how those outcomes, actions and 
properties affect us and whether or not we know 
whether these potential effects have been real-
ized.  The OCC model was deliberately designed 
to be implementable on an artificial intelligence 
system: the emotion model of the ABL system we 
describe later was derived from the Em (Reilly 
1996) implementation of OCC, and many other 
systems have used related models (e.g.,  Elliott 
1992, Studdard 1995, Koda 1996, Karunaratne & 
Yan 2001, Bartneck 2002, Li et al. 2007). 

Memory Retrieval and Machine 
Learning

There are many machine learning techniques 
that can exploit past experience (Mitchell, 1997, 
Alpaydin, 2004); two popular techniques are case-
based reasoning and reinforcement learning.

A case based reasoning system learns by 
storing specific episodes, or cases; this involves 
deciding what parts of a current experience to 
store, what lesson the experience teaches, and 
how to label the experience for retrieval later 
(Kolodner 1993). Once an agent has retrieved a 
case from its case library, it must adapt it to solve 
the current problem, and then ideally update its 
records of its experiences based on the new out-
come (Kolodner 1984).

Reinforcement learning, commonly used in 
robotic learning and control, attempts to find a 
scheme for selecting actions, or policy, that maxi-
mizes the agent’s return on a reward function (Sut-
ton & Barto, 1998).  Reinforcement learning and 
case-based reasoning can be combined: the LARC 
model (Santamaria, 1997) stores cases that trace 
the recent history of the agent’s perceptions and 
behaviors along with the accompanying reward 
function; these cases are retrieved later using an 
adaptive nearest-neighbor approach.

Personality Regulation and Behavior 
Transformation

The behavior of an agent can be considered a reac-
tive plan, making revising an agent’s behavior a 
problem of runtime reactive-plan revision.  There 
are many approaches to revise plans on failure.

Classical planning assumes the agent is the 
sole source of change, actions are deterministic 
and sequential, and that the world is fully observ-
able.  Conditional planners such as Conditional 
Non Linear Planner (Peot and Smith, 1992) and 
Sensory Graph Plan (Weld et al., 1998) support 
sensing actions so that the appropriate conditional 
branch of the plan is taken, but this can cause 
plans to grow exponentially. 

Decision-theoretic planners deal well with ex-
ogenous events and non-determinism by modeling 
problems as Markov decision processes (MDPs) 
and solving problems by learning a policy, like 
reinforcement learners. Partially observable 
MDPs can even be used when the world is not 
fully observable.  But these approaches require 
many iterations to converge, their state spaces 
become intractable in complex domains, and they 
learn static policies that cannot be easily retrained 
during dynamic game play.

Transformational planning handles these prob-
lems of complexity and non-determinism by not 
reasoning about the problem domain to generate 
a new plan, but instead by reasoning about the 
failing plan itself, transforming it to fix the failure 
without breaking the rest of the plan.

emotional long teRm 
memoRy foR configuRation 
and PeRSonality

As an alternative to putting vast amounts of au-
thoring effort into designing behaviors that handle 
every situation, we propose to create believable, 
engaging artificial characters capable of long-
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term interaction with a human user by explicitly 
modeling the emotional adaptation that goes on 
in humans and animals.  Our model includes the 
simulation of emotional response to engage a hu-
man user’s interest, adaptation of that response in 
a naturalistic way to maintain the user’s interest, 
and ongoing monitoring of how that adaptation 
fits the agent’s personality to avoid violating the 
human’s expectations.

• Reactive control makes it possible to au-
thor sophisticated behaviors on a robot or 
embodied character constantly interacting 
with a changing real-time environment.  
While not strictly part of our emotion and 
personality model, both implemented case 
studies used a reactive control system that 
supported complex behaviors as the plat-
form to build the emotion, adaptation and 
personality model systems that comprise 
the rest of our model. 

• Emotional responses allow an agent to 
respond appropriately to its environment be-
fore learning.  For example, even if a person 
has never seen a tiger, if a tiger appears and 
roars, that person will become afraid and 
run away.  We model emotional response 
as situation evaluation, stance selection, 
and behavior selection: the agent evaluates 
the appearance of a large, loud animal as a 
threat to safety, chooses a stance towards 
this new object that it should be avoided, 
and on the basis of this stance selects good 
avoidance behaviors like running.  

• Emotional adaptation allows an agent to 
analyze the results of an experience and alter 
its future behavior.  The next time that the 
unfortunate person of our previous example 
sees a tiger, he will not need to wait for the 
tiger to roar to decide to run.  We model this 
in terms of object recognition, outcome as-
sociation, and response adaptation: the agent 
identifies the tiger as a distinct object, stores 
it in memory associated with the threat to 

safety and the stance of fear, and adapts its 
situation evaluation process when the object 
is seen again, enabling him to select fight or 
flight behaviors faster than before.

• Personality modeling enables an agent to 
remain consistent over time.  As situations 
change and emotions adapt, certain aspects 
of the behavior of a human or an animal 
tend to stay the same; we describe these as 
the agent’s personality.  We model this in 
terms of emotional monitoring, personality 
evaluation, and behavioral transformation: 
the agent monitors that it has been frequently 
frightened on this path, realizes that it does 
not like being repeatedly frightened, and 
changes its behavior to avoid the path.

This model allows an agent to learn from its 
basic emotional responses, to expand its repertoire 
of emotional behavior, and to guide its emotional 
development with respect to its personality.  More 
importantly, from our perspective, it provides a 
natural interface between man and machine, one 
that allows an artificial pet or virtual character to 
learn its user’s preferences automatically, without 
explicit configuration or programming on the 
part of the user, while still remaining consistent 
with the original author’s design intent.  We now 
describe case studies implementing two aspects 
of this model.

case Study: emotional long term 
Memory for Agent Configuration in 
the PePe Project

Most users would probably not want to crack open 
a manual just to tell a robot pet not to disturb their 
afternoon nap; they would rather communicate this 
simply through natural language, or even more 
simply, by expressing pleasure or displeasure at 
the agent’s behavior.  This is the configuration 
problem: how can humans express their prefer-
ences towards a synthetic character?  Our solution 
to this problem is emotional long term memory, 
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an approach which proposes that an agent can be 
configured to interact appropriately with humans 
by giving the agent an emotional model, a memory 
for those emotions, and the ability for remembered 
emotions to affect its current state.

In our motivating example, pets learn their 
owner’s preferences by remembering and recall-
ing the emotional experiences that resulted from 
their past behaviors.  It would not be necessary 
to “configure” such a robot not to hop up onto a 
table: it would only be necessary to loudly shout 
“down” and let the robot learn to associate hop-
ping up on a table with painful emotional shocks.  
Our model can also extend this idea to multiple 
agents: a pet can learn to avoid the crotchety 
grandparent and to approach the playful child 
simply by having “normal” emotional reactions 
to the grandparent being crotchety and the child 
being playful.

We tested these ideas for emotion-based con-
figuration in the Personal Pet (PEPE) Project, a 
joint project between Georgia Tech and Yamaha 
Motor Corporation to produce a believable, engag-
ing artificial pet capable of long-term interaction 
with multiple human users.  The PEPE project 
developed a cognitively inspired robot control 
architecture that made it easy for us to author 
complex behaviors on top of a reactive system; 
on top of this we implemented a model of emo-
tional long term memory in which memories of 
emotional experience influenced future emotional 
responses.

Reactive Control using the PEPE 
Architecture

The PEPE architecture supports several overlap-
ping goals: controlling a robot robustly, perform-
ing sophisticated behaviors, and adapting in 
response to user behaviors.  To achieve this, the 
PEPE architecture uses a layered approach in 
which complex cognitive processing is layered 
atop simpler, faster behaviors.  These layers in-
clude reflexive, reactive, deliberative, emotional 
and memory processes (Figure 1): 

• The Reflex Layer directly connects raw 
sensation to effector commands.  Reflexes 
are high-priority behaviors which must be 
executed immediately to be effective, such 
as emergency obstacle avoidance and shut-
ting down electric motors if they begin to 
draw too much current. 

• The Reactive Layer maps processed per-
ceptions to effector commands in a fast 
constant-time fashion using motor schemas 
(Arkin, 1989), which produce an output vec-
tor encapsulating a simple behavior, such as 
obstacle avoidance, noise or pursuit of goals.  
Motor schemas can be summed through 
fast vector addition to produce coherent and 
consistent reactive behavior.  Sets of motor 
schemas can be combined into a behavior 
configuration which determines robot head-
ing, camera pan and tilt, and other effector 
commands.

• The Deliberative Layer combines a planner 
with a plan execution system that activates 
behavior configurations in the reactive level 
based on the current state of an executing 
plan.  Each state of a plan defines a behav-
ior configuration designed to achieve or 
maintain some state, akin to an operator in 
a traditional plan.  When preconditions for 
a state change are met, the planner swaps 
in the appropriate behavior configuration 
— ensuring some behavior configuration 
is active regardless of how much effort is 
expended constructing plans.

• The Emotional Layer computes impacts 
to the agent’s concerns, resulting in an 
emotional state that influences lower levels 
primarily through the setting of goals.  This 
contributes to robustness: if no emotion 
arises or an emotion adds a goal for which 
there is no current plan, the agent can con-
tinue executing its current plan and behavior 
configuration until the planner decides what 
it needs to do.
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• The Memory System records rewards and 
preferences on events and objects based on 
the agent’s complete mental state, includ-
ing perceptions, plans, goals and emotions.  
Its influence on lower levels in the current 
architecture is primarily by feeding back 
into the emotional layer, again contribut-
ing to robustness; if the agent is in a novel 
situation it falls back on its basic emotional 
responses.

Each layer in this architecture is influenced by 
information from layers above it without depend-
ing on it.  In this way, more abstract and symbolic 
layers can influence lower layers without disrupt-
ing the flow of their processing, no matter how 
much time is required to perform that symbolic 
computation. This combines aspects of subsump-
tion architectures (Brooks, 1986) and high-level 
symbolic systems to produce sophisticated and 
robust behavior even in the face of noisy sensor 
data.

User Adaptation Using Emotional Long 
Term Memory

ELTM was intended to both enable the adapta-
tion of the emotional response in a naturalistic 
way that would maintain a single user’s interest 
over the life of the pet, and to enable the robot to 
‘configure’ itself with respect to different members 
of a household that showed it different levels of 
affection.  Basic (non-learned) emotional response 
in ELTM is composed of three major functions: 
situation evaluation, stance selection, and goal 
selection, which correspond directly to the con-
cerns, emotions, and goals of Frijda’s theory:

• Situation Evaluation: The agent constantly 
evaluates the experiences it is having with 
respect to the concerns that it has: this 
produces a vector of evaluations about the 
agent’s safety, socialization, food, battery 
level, and so on. This vector represents 
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Figure 1. Layers of control in the PEPE architecture
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roughly the agent’s basic emotional appraisal 
of a situation.

• Stance Selection: As situations change, the 
agent may choose a stance towards its current 
situation: this “emotional stance” consists of 
a high-level behavioral mode relevant to the 
active concerns, such as approaching, flee-
ing, investigating and so on.  This roughly 
represents the agent’s emotional response 
to its situation.

• Goal Selection: When an agent changes its 
behavioral mode, it must select goals and 
actions consistent with this new emotional 
stance, which may mean modifying the 
current plan or replacing it entirely.  This 
roughly corresponds to what the agent’s 
emotional response is motivating it to do.

Adapting an emotional response in this model 
consists of modifying how the agent evaluates 
its situations, selects stances, and selects goals.  
ELTM makes these modifications using an object 
identification system and a long term memory 
retrieval system integrated with the emotion 
model.  Emotional adaptation was achieved with 
three processes: recognizing situations, associat-
ing them with outcomes, and responding to these 
emotional associations:

• Recognizing Situations: The agent has an 
object identification system which attempts 
to identify distinct entities in the agent’s en-
vironment, paired with a long term memory 
system which stores records of what objects 
have been previously seen as well as specific 
situations in which they have occurred.  
Every experience in long term memory is 
labeled with a vector of features.  When a 
new experience arises, the agent searches 
for the most similar past experience — the 
past experience that shares the most features 
with the current experience.

• Associating Outcomes: When an emotion-
ally significant event happens — a large 

change in the situation evaluation, or a shift 
in the selected stance — the agent stores the 
current experience tagged with the emotional 
vector as outcome information.  This is es-
sentially a case in a case based reasoning 
sense, storing the “lesson” that this experi-
ence has taught the agent.  Furthermore, the 
agent attempts to assign credit or blame for 
the change upon the objects and situations 
it recognizes in its environment by record-
ing a preference vector on that object. As in 
humans and animals, we decide what objects 
to credit or blame in an emotion-specific 
fashion (Frijda, 1987).

• Responding to Associations: When an 
agent identifies an object or situation it has 
seen before, it also retrieves the emotional 
vectors associated with that object or situa-
tion.  In turn, the agent’s situation evaluation 
system is modified to incorporate the past 
emotional vector into the current state.  When 
an agent recognizes an object or situation, 
it can use the preferences and outcomes 
associated with the object and situation to 
modify its concern values.  This is done in 
a concern-specific fashion; a safety concern 
may place different weights on preferences 
and outcomes than a socialization con-
cern.

ELTM thus combines ideas like Frijda’s (1987) 
— that emotions represent an agent’s concerns 
about the world — with ideas of case based reason-
ing (Kolodner, 1993) — that learning takes place 
by remembering the lessons taught by experiences.  
Emotional adaptation consists of learning from 
the emotional content of specific past experiences 
and, over time, from the emotional labeling of 
objects that have appeared again and again.  We 
represented these emotional experiences as a 
vector based on a deliberate parallel with Simon’s 
(1983) idea of emotion as the evaluation function 
of a multidimensional subjective expected utility 
(SEU) problem.
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In this view, emotions break the very difficult 
problem of deciding between otherwise incom-
mensurable choices into separate problems with 
different reward functions, each of which can be 
optimized separately when the emotional system 
puts it into the forefront.  Our goal in doing so 
was to provide a basis for deploying other learn-
ing systems consistent with the SEU framework.  
For example, interpreting the emotion vector as a 
multidimensional reward signal was inspired by 
the LARC model (Santamaria 1997), which used 
a single reward signal for a case-based reinforce-
ment learning algorithm. 

Evaluation of the Approach

We developed two implementations of the PEPE 
architecture on top of the TeamBots platform 
(Balch 2000).  The first, developed at Georgia Tech 
for a tracked robot testbed, was used for testing 
reactive control and facial recognition (Stoytchev 
& Tanawongsuwan, 1998).  The second implemen-
tation, developed by a joint Georgia Tech-Yamaha 
team for a wheeled robot prototype (Figure 2), 
was focused on testing the emotional long term 
memory system.  This prototype had a targetable 
camera head and two touch sensors, one on the 
head and one on the “rear” of the robot.  At the 
time of our tests, the face recognition system was 

not complete, so we gave our volunteers colored 
t-shirts to enable the robot to recognize them.

To test the PEPE architecture and our ELTM 
model, we implemented a simple library of behav-
iors, such as wandering, approach and avoidance, 
which could in turn be composed into higher level 
behaviors such as “playing” (alternately wander-
ing and approaching an object) and “fleeing” 
(backing up, executing a fast 180, and running 
away).  The emotion model extended this with a 
simple set of concerns, including avoiding pain, 
which we derived from “kicks” to the rear sen-
sor, and socialization, which we derived from a 
combination of proximity to people objects and 
“petting” the head sensor.  The robot had sev-
eral emotional states, including a neutral state, a 
“happy” state associated with socialization, and a 
“fearful” state associated with pain.  The robot’s 
planner attempted to find plans which matched 
the current emotional state and execute them.  The 
robot’s typical behavior was to wander looking 
for someone to play with it, and then to attempt 
to stay close to individuals who “petted” it and to 
flee from individuals who “kicked” it.

Prior to the addition of the ELTM, the robot 
had considerable internal flexibility, but externally 
appeared no more sophisticated than a system with 
two buttons that switched it between behavior 
modes for “play” and “run away”. The emotional 
long term memory extended this behavior.  Its 
situation recognizer identified moving patches as 
distinct objects by color.  The outcome associator 
detected either strong changes to single concerns 
(e.g., a nearby user deciding to “pet” the robot, 
strongly increasing the level of the socialization 
concern) or shifts in the emotional stance (e.g., a 
user deciding to “kick” the robot, increasing the 
pain concern and causing the robots stance to 
switch from “happy” to “fearful”); this shift trig-
gered updates to the emotional vectors associated 
with all detected objects, along with the storage 
of a case representing the robot’s current emo-
tion, stance, plan, action, overall environment, 
and present objects.  The situation recognition 

Figure 2. The Yamaha robot prototype
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system continually tried to find relevant cases and 
to determine whether detected objects had been 
previously seen; when previously seen objects 
or situations were detected, these were blended 
in to the robot’s current concern state. We tested 
this extensively in simulation, and when the robot 
prototype was next available for testing, in a series 
of live trials lasting for several days.

The results of adding the memory model were 
dramatic.  Without authoring any additional plans, 
behaviors or emotional states, the robot’s behavior 
nonetheless changed.  Now, its initial wandering 
behavior was augmented by self-initiated rather 
than reactive approach-avoidance behaviors: 
rather than wait for a user to pet it or kick it, it 
would actively approach users that had petted it 
in the past or avoid (and sometimes abruptly flee) 
from users who had kicked it.

After the conclusion of the joint Georgia Tech-
Yamaha tests on the Yamaha prototype, the next 
step was to port the emotion model back to the 
Georgia Tech testbed, which had a much wider 
array of sensors and effectors and a much more 
advanced vision system.  However, the project 
was canceled before this work could be ported 
back to the testbed, so we could not run more 
extensive tests on either robot.

Therefore, one of the major goals of the project 
failed: we cannot report results on how well this 
model performed on longer human interactions, 
and the results we can report were conducted in 
a very small set of trials.  While we were satis-
fied with what we achieved — the emotional 
long term memory at least appeared to make the 
robot’s behavior far more rich based on the same 
set of base behaviors — by itself this was still 
impressive primarily in a “look ma no hands” 
way (McCarthy 1974).

However, in a similar but independent project 
also sponsored by Yamaha, Velasquez et al (1998) 
implemented a model of emotional memory in a 
similar robot called Yuppy.  There were differences 
between these systems — for example, the emo-
tion releasers in the Yuppy model had short term 

memory, enabling it to “habituate” to constantly 
present stimuli, and the case library in the PEPE 
model stored episodes, enabling it to associate 
emotions with situations — but both incorporated 
an emotion model, learned emotional responses, 
and the ability to change behaviors based on the 
current emotional state.

In a series of trials similar to what we conducted 
on PEPE, Velasquez demonstrated Yuppy could 
learn to prefer or fear users based on how the users 
treated it.  This obviously does not strengthen the 
evidence for the specific PEPE model; however, 
based on the similarities between the PEPE and 
Yuppy models, we believe the similarity of the 
results does suggest that the general emotional long 
term memory approach is an effective technique 
for making agents adapt to users.

case Study: emotion-triggered 
Behavior Modification for Stable 
Personalities on the abl Platform

Embodied agents that interact with humans 
over longer timeframes should not just adapt to 
create interest, they should maintain consistent 
personalities to retain believability.  Ideally, we 
want a self-adapting behavior set for characters, 
allowing characters to autonomously exhibit their 
author-specified personalities in new and unfore-
seen circumstances, and relieving authors of the 
burden of writing behaviors for every possible 
situation.  In the field of embodied agents, there 
has been little work on agents that are introspec-
tively aware of their internal state, let alone agents 
that can rewrite themselves based on deliberat-
ing over their internal state.  However, this is 
precisely what psychological research indicates 
that humans do when stress or disruption makes 
them aware that their behavior is not living up to 
their standards.

We propose a model in which emotion provides 
the agent with the knowledge that its current be-
havior library is creating inappropriate behavior 
and should be revised accordingly.  For example, a 
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robot pet playing tag with a user would normally 
succeed using its default chasing behavior, but this 
might fail if the user is standing on a table, either 
because the agent has been told not to climb on 
it as above, or simply because its default chasing 
behavior does not include jumping.  Although 
the pet can see the user, he cannot reach her, 
causing the agent’s behavior to persistently fail.  
Our emotion modeling transforms this persistent 
failure at a given goal into a raised stress level of 
the agent, which can trigger a behavior modifica-
tion routine that revises the behavior, for example 
by adding a jumping behavior to its ‘playing tag’ 
repertoire.

A key element to making this behavioral revi-
sion work is the use of transformational planning 
(TP), which does not reason about the domain to 
generate a plan but instead reasons about a fail-
ing plan and transforms it so as to fix the failure 
without breaking the rest.  This insight is key, 
but we could not directly apply it because TP is 
generally applied to plans built from STRIPS-like 
operators, not rich reactive planning languages 
like ABL.  Therefore, we developed novel behavior 
transformations and techniques for blame assign-

ment that enabled us to apply TP to our behavior 
modification problem.

Our second case study was implemented on a 
game scenario which consists of two embodied 
characters named Jack and Jill. They are involved 
in a game of Tag where the character who is “It” 
chases the other around the game area.  Each 
character’s behavior library reflects their person-
ality and consists of about 50 behaviors coded in 
ABL, a language designed for believable char-
acters.  Our system (see Figure 2) is composed 
of a reactive layer which handles the real-time 
interactions, and a reasoning layer responsible 
for monitoring the character’s state and making 
repairs as needed.

Reactive Control Using the ABL 
Programming Language 

Our game environment presents a certain set of 
challenges for the reactive layer.  First, a real-time 
game domain requires the reactive layer to have a 
fast runtime processing component with a short 
sense-decide-act loop.  Second, the game world’s 
interactive nature entails that the reactive layer 

Figure 3. Architecture of the behavior transformation system
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handles conditional execution appropriately and 
provides the ability to support varying behaviors 
under different situations at runtime.  Finally, for 
game worlds containing embodied, believable 
characters, the reactive layer must provide sup-
port for the execution of multiple, simultaneous 
behaviors, allowing characters to gaze, speak, 
walk around, gesture with their hands and convey 
facial expressions, all at the same time.

To meet these requirements we use A Behav-
ior Language (ABL) for the reactive layer.  ABL 
is explicitly designed to support programming 
idioms for the creation of reactive, believable 
agents (Mateas and Stern, 2004).  Its fast runtime 
execution module makes it suitable for real-time 
scenarios.  ABL is a proven language for believ-
able characters, having been successfully used 
to author the central characters Trip and Grace 
for the interactive drama Façade (Mateas and 
Stern, 2003).

A character authored in ABL is composed 
of a library of behaviors, capturing the various 
activities the character can perform in the world.  
Behaviors are dynamically selected to accomplish 
goals - different behaviors are appropriate for ac-
complishing the same goal in different contexts.  
For example, the goal of expressing anger can 
be accomplished through either a behavior that 
screams or a behavior that punches a hole in the 
wall.  Behaviors consist of sequential or parallel 
steps; steps can be subgoals, mental updates, or 
game actions.

Currently active goals and behaviors are cap-
tured in the active behavior tree.  During execution, 
steps may fail (e.g., no behavior can be found to 
accomplish a subgoal, or an action fails in the 
game world), potentially causing the enclosing 
behavior to fail.  Step and behavior annotations 
can modify the cascading effects of success and 
failure.  Behavior preconditions are used to find 
appropriate behaviors for accomplishing a goal 
in the current context. Conditions test against 
working memory, which encodes both currently 
sensed information and agent-specific internal 
state (e.g., emotional state). 

ABL’s runtime execution module acts as the 
front-end for communication with the game en-
vironment. It constantly senses the world, keeps 
track of the current game state, updates the active 
behavior tree and initiates and monitors primitive 
actions in the game world.  Continuously moni-
tored conditions, such as context conditions and 
success tests, provide immediate, reactive re-
sponse.  Furthermore, the runtime system provides 
support for meta-behaviors that can monitor (and 
potentially change) the active behavior tree.

Implementing Emotion-Driven Behavior 
Modification

To support emotion-driven behavior modification, 
we implemented a reasoning layer that supports 
anomaly detection, blame assignment, and be-
havioral modification.  Anomaly detection tracks 
long-term patterns in the character’s behavior 
execution and detects violations of the author-
specified behavior contract. When a contract 
violation is detected, blame assignment uses the 
execution trace to identify one or more behaviors 
that should be changed. The behavioral modifi-
cation component repairs offending behaviors 
identified during blame assignment and reloads 
them into the agent. 

• Anomaly detection: Authors need a way to 
specify contracts about long-term character 
behavior; when the contract is violated, the 
reasoning layer should modify the behav-
ior library.  Our emotion model is an OCC 
model based on Em (Reilly, 1996).  Emotion 
values serve as compact representations of 
long-term behavior: a character’s emotional 
state is modified when behaviors succeed or 
fail in a way defined by the author as part 
of specifying the character personality. The 
author specifies personality-specific con-
straints on behavior by specifying bounds 
for emotion values. The reasoning layer 
interprets an emotion exceeding its bounds 
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to mean that the current behavior library is 
creating inappropriate long-term behavior 
and that it should seek to assign blame and 
change the behavior.

• Blame assignment: The behaviors that 
should be revised in response to a violation 
of the personality contract are determined 
using the meta-reasoning capability of ABL 
to trace agent execution. Blame assign-
ment analyzes the past execution trace and 
identifies the behavior with the maximal 
contribution to the out-of-bound emotion 
value, amortized over time, as the respon-
sible behavior.

• Behavior modification: Offending behav-
iors are modified using a set of modification 
operators.  Applicability of an operator de-
pends on the role the behavior plays in the 
execution trace — that is, on the explanation 
of how the behavior contributed to a contract 
violation. Modification operators are catego-
rized according to failure patterns, which 
provide an abstraction mechanism over the 
execution trace to detect the type of failure 
that is taking place. Failure patterns are 
encoded loosely as finite state machines that 
look for patterns in the execution trace. 

At runtime, the system detects when the author-
provided behavior contract has been violated.  
Once blame assignment has determined the of-
fending behavior, the system uses the failure pat-
terns to explain the behavior’s role in the contract 
violation. The set of matching failure patterns 
provide an associated set of applicable behavior 
modification operators to try on the offending 
behavior, which are tried one at a time until one 
succeeds. We then modified ABL’s runtime system 
and compiler so that modified behaviors can be 
compiled and reloaded into the agent, allowing 
the game to continue uninterrupted. 

Evaluation of the Behavior 
Transformation Architecture

We evaluated our behavior adaptation system 
on Jack and Jill, two hand-authored embodied 
characters designed to play a game of Tag.  Each 
character has its own personality that affects the 
way they approach play: Jack likes to daydream 
and is not particularly interested in the game, 
whereas Jill is bored if she is not being chased 
or chasing someone.  Jack and Jill were initially 
authored by people on a different research project, 
providing a great opportunity for us to evaluate 
our system.  Their behavior set made fixed as-
sumptions about world dynamics which will be 
ineffective at maintaining personality invariants 
in the face of change.  If our system can help 
maintain those invariants then it is an effective 
means of behavior adaptation.

Specifically, we provided emotion annotations 
by associating a stress emotion with being chased 
and placing nominal bounds on stress, specifying 
a contract on Jack’s intended personality.  We 
then tested whether our system is able to suc-
cessfully modify the behavior library to changing 
environments.  In our experiment, we simulated 
a changing world by moving the tag agent whose 
behaviors had been built for a specific map into 
a larger and sparser version. 

Our experimental procedure involves first 
running the game scenario without the adaptation 
mechanisms and continuously observing Jack’s 
stress level.  We then run Jack with the adaptation 
mechanisms.  Figure 4 shows Jack’s stress levels 
averaged over five 10-minute games before adap-
tation, and with two different behavior libraries 
modified by our system.  Blame assignment found 
that the behavior Run_Away_1 is responsible for 
stress exceeding bounds.  In the ideal case, Jack 
would run away for a while, until he was able to 
escape out of sight, at which point, he would head 
for a hiding place.  Trace analysis however shows 
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Figure 4. Average stress level from the evaluation experiment

that Jack turning around to ensure he is not being 
followed always fails.  Jack is never able to run 
away and escape out of sight long enough to risk 
going to a hiding place.  This situation tends to 
occur on our test maps because they are sparse; 
with fewer obstacles it is more difficult for Jack 
to ever escape out of sight.  As a result, Jack is 
continuously under immediate pursuit and his 
stress level quickly exceeds bounds.

In our runs, the behavior adaptation system 
found two different modifications that brought 
stress back in bounds. In the first case, the 
system changed the AvoidItPerson_3 behavior 
(see Figure 5) from a sequential behavior to a 
parallel behavior.  Originally we expected Jack 
to ensure no one is following before hiding, but 
the system’s change is actually quite reasonable.  
When pressed, it makes sense to keep running 
while turning around. If it turns out someone is 
following you, you can always change course and 
not go to the secret hiding place. Visually, this 
change was quite appealing. Jack, when running 
away, would start strafing towards his hiding place, 
allowing him to move towards his destination 
while keeping a look out.

Unfortunately, this change was unstable.  Due 
to how Jack navigates, if he cannot see his next 

navigation point, he will stall (a defect in his 
navigation behaviors).  Surprisingly, even with this 
defect, Jack with this change is able to stay within 
his normal stress bounds.  We initially assumed 
this was because the defect happened rarely, but 
in fact it was the opposite.  While running away, 
Jack was always getting stuck, allowing Jill to tag 
him.  This decreases stress because Jack is not as 
stressed when he is the pursuer; he can take his 
time and is not pressed.

At one level this result is surprising and 
wonderful.  Jack, the daydreamer, successfully 
“gamed” the system: as “It” he does not have to 
work so hard to play.  But for the purpose of our 
evaluation,  this change was nevertheless undesir-
able.  Jack is violating an implicit behavior contract 
that Jack should not allow himself to be tagged.  
The adaptation system essentially found a clever 
way to take advantage of the under specifica-
tion of the author’s intent.  After amending the 
specifications, our behavior adaptation system 
found an alternate change: to reorder the steps 
inside AvoidItPerson_3.  In the new behavior set, 
AvoidItPerson_3 first hides and then turns around 
to ensure no one is following instead of the other 
way around.  This results in behavior as good if 
not better than the parallel version. 
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futuRe tRendS

Our case studies were implemented independently 
on two different systems, but the underlying reac-
tive control systems and the role of the emotion 
models used were very similar.  Therefore, the 
natural next step would be to attempt to incorpo-
rate both models into a single system with both 
emotional adaptation and personality updates.

In the PEPE system, the emotion vector was 
relatively simple, as were the learning algorithms.  
Another natural next step would be to use a richer 
emotion model, such as the Em model used in 
our ABL work, or to use more sophisticated 
learning algorithms, such as a full version of the 
Santamaria LARC model that PEPE’s learning 
model emulated.

In our ABL work, to increase the transfor-
mational power of our system we are adding 
more behavior modification operators, which has 
several effects.  First, as the number of operators 
increases, the time required to reason about them 
and find the applicable set increases.  Second, 
operators for more complex scenarios may have 
a lower success rate, requiring us to focus the 
search through behavior transformation space.  
It will become necessary for the reasoning layer 
to learn which operators are best applicable in 
which situations, such that fewer operators have 
to be tried.  These characteristics of the problem 
make a case-based approach, as a form of speedup 
learning, very attractive.

concluSion

Unlike a psychological model of emotion, which 
can be tested against the behavior of humans 
and animals, evaluating the performance of an 
artificial intelligence system that displays or uses 
emotion is difficult.  Our results with PEPE and 
ABL are suggestive but it is difficult to prove that 
they are “better” than a hand-authored system.  
However, our experiences developing PEPE none-
theless did teach a few important lessons:

• Layered architectures aid behavioral 
authoring: For a variety of reasons we were 
only able to use part of the Georgia Tech 
PEPE code to develop the joint prototype; 
nonetheless, by layering the system we were 
able to achieve a large amount of work in 
a short period of time.  The TeamBots sys-
tem provided a set of reactive behaviors, 
upon which we layered the planner, the 
emotion system, and the memory system; 
furthermore it insulated the higher levels of 
the system from the robot implementation, 
enabling us to test the behaviors in simula-
tion while physical issues were worked out 
on the robot testbed.  The PEPE portion of 
the joint testbed took approximately two 
man-months of programmer effort, and the 
complete software developed for these tests, 
including low-level control and the visual 
processing system, took approximately six 
man-months.

sequential behavior AvoidItPerson() {
precondition {(ItWME itPlayerName :: itAgent)
        !(AgentPositionWME objectID == itAgent)}
    with(post) subgoal Hide();        
    with(post) subgoal TurnAroundEnsureEscape();}

Figure 5. The modified behavior



408  

Emotional Memory and Adaptive Personalities

• Emotional adaptation increases behav-
ioral flexibility: The emotional memory 
system dramatically changed the external 
behavior with no significant changes to the 
existing plans, requiring only the incorpo-
ration of remembered emotion values into 
the current emotional state.  This simple 
shift changed the appearance of the robot’s 
behavior from a creature that reacted in a 
fixed way to external contact from an end 
user to a creature that had internally gener-
ated behaviors that could be affected by the 
sight of a person from a distance.

• Active reminding is required for emo-
tional adaptation: The emotion model 
changed the agent’s personality, but its 
behavior appeared fixed, similarly, just 
storing cases in the robot’s case library did 
not change its behavior.  The critical enabler 
for emotional memory was the situation 
recognizer: to learn, the robot required an 
active reminding process constantly trying 
to identify objects and situations in terms 
of its experience.  The emotion system only 
had the opportunity to adapt when a case 
was retrieved or an object identified.

Similarly, developing the behavior transforma-
tion system for ABL also taught a few important 
lessons:

• Transformational planning aids behavior 
transformation: In an interactive, real-time 
domain, characters are constantly interact-
ing with the user.  Furthermore, their actions 
are non-deterministic, need to be executed in 
parallel, and have effects that are difficult to 
quantify.  Transformational planning made 
it possible for our characters to modify their 
behaviors, but we had to develop novel be-
havior transformations and techniques for 
blame assignment to enable TP to deal with 
this complexity and non-determinism.

• Language support for behavior transfor-
mation makes modifying behavior easier: 
Behaviors written for a believable character 
are code written in a programming language, 
so modifying behaviors at run time involves 
rewriting the code for the agent.  We spent a 
lot of time implementing behavior modifica-
tion operators to accomplish this.  Authoring 
behaviors in a programming language that 
provided native support for changing its 
functional constructs (e.g., treating functions 
as first order entities as in LISP) would have 
made modifying the behaviors at run-time 
a much easier process. 

Our work used emotion as a trigger for learning 
about the environment and agents within it, and 
as a trigger for behavioral change.  This model 
made it possible for us to develop sophisticated 
and sometimes surprising agent behaviors in less 
time and with less effort than we could have done 
otherwise.  Therefore, we conclude that emotion-
driven learning and emotion-driven behavioral 
updates are useful methods for developing believ-
able agents that adapt to their environments and 
users in a way which appears emotionally plausible 
while maintaining a consistent personality.
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key teRmS

The following terms and acronyms were used in 
this chapter and might warrant definitions in the 
Handbook:

ABL (A Behavior Language):  ABL is a 
programming language explicitly designed to 
support programming idioms for the creation of 
reactive, believable agents (Mateas and Stern, 
2004).  ABL has been successfully used to author 

the central characters Trip and Grace for the in-
teractive drama Facade (Mateas and Stern, 2003).  
The ABL compiler is written in Java and targets 
Java; the generated Java code is supported by the 
ABL runtime system.

Appraisal: In the OCC (Ortony et al. 1988) 
and Frijda (1993) models of emotion, appraisal 
matches the experience of an agent against its 
goals, standards, preferences and other concerns.  
The results of this matching give emotional events 
their positive or negative feeling or weight, called 
affect, and can also place this affective response 
in context.

Blame Assignment: In learning and adapta-
tion, blame assignment is the process of identifying 
the causes of a failure of a computational system 
to deliver the behaviors desired of it.

Case-Based Reasoning: Case-based reason-
ing (Kolodner 1993) is a reasoning architecture 
that stores experiences with lessons learned as 
cases in a case library and solves problems by 
retrieving the case most similar to the current 
situation, adapting it for reuse, and retaining new 
solutions once they have been applied.  Case-based 
reasoning is also a pervasive behavior in everyday 
human problem solving. 

Concern: In Frijda’s (1986) model of emotion, 
concerns correspond to the needs, preferences 
and drives of an agent – things that “matter” and 
can trigger changes to the emotional state of the 
agent.

OCC Model of Emotion: Ortony, Clore and 
Collins’s (Ortony et al. 1988) model of emotion is 
a widely used model of emotion that states that the 
strength of a given emotion primarily depends on 
the events, agents, or objects in the environment of 
the agent exhibiting the emotion.  A large number 
of researchers have employed the OCC model to 
generate emotions for their embodied characters.  
The model specifies about 22 emotion categories 
and consists of five processes that define the 
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complete system that characters follow from the 
initial categorization of an event to the resulting 
behavior of the character.  These processes are 
namely a) classifying the event, action or object en-
countered, b) quantifying the intensity of affected 
emotions, c) interaction of the newly generated 
emotion with existing emotions, d) mapping the 
emotional state to an emotional expression and 
e) expressing the emotional state. 

MDP (Markov Decision Processes): Markov 
decision processes provide a mathematical frame-
work for modeling decision-making characterized 
by a set of states where in each state there are sev-
eral actions from which the decision maker must 

choose and transitions to a new state at time t + 1 
from time t are only dependent on the current state 
and independent of all previous states. MDPs are 
useful for studying a wide range of optimization 
problems solved via dynamic programming and 
reinforcement learning.

SEU (Subjective Expected Utility Theory): 
Subjective expected utility theory (Simon 1983) 
holds that a rational agent should attempt to maxi-
mize its reward by choosing the action with the 
highest expected utility — effectively, the sum 
of the rewards of the outcomes discounted by the 
probabilities of their occurrence.


