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1. Introduction 
The Information Retrieval Intelligent Assistant 
(IRIA) project applies principles of memory 
retrieval from cognitive science to the problem 
of information retrieval from large 
heterogeneous databases.  IRIA uses spreading 
activation over a semantic network for 
information retrieval, a technique which has 
proven effective in a variety of tasks.   

However, some of the very features which 
motivated the choice of spreading activation for 
information retrieval — such the use of fanout to 
automatically compute term weights, or the use 
of thresholds to automatically limit computation 
spent on irrelevant items — can introduce new 
problems as systems are scaled to larger sizes.  

This paper discusses the use of semantic 
networks and spreading activation for 
information retrieval in the context of the IRIA 
approach, reviews some of the problems that 
arise as these technologies are scaled up to 
production systems, presents some preliminary 
results that illustrate these problems in practice, 
and discusses potential solutions.  

2. The Problem 
The success of the Net has made vast amounts of 
information on a wide variety of topics available 
all over the Earth.  To fully exploit this rich but 
often frustrating resource, users require efficient 
and effective methods to retrieve information 
from what is essentially a large, heterogeneous, 
distributed database.  A good solution to this 
problem would not only benefit users of the 
Web but also users of the vast intranets and 
datastores proprietary to large corporations and 
government organizations. 

One of the primary challenges in this area of 
information retrieval is finding the wheat among 
the chaff — formulating queries which 
effectively focus retrieval on relevant 
information while excluding irrelevant 
information.  Many techniques exist to tackle 
this problem, from precise query languages [2] 
to advanced relevance algorithms [3] to 
relevance feedback [13, 14]. The IRIA project 
combines the best features of many of these 
approaches.   

2.1. The IRIA Approach 
The Information Research Intelligent Assistant 
is an information retrieval architecture that 
addresses the problem of information retrieval 
from large heterogeneous databases.  The IRIA 
approach is based on: 
• dynamically harvesting semantic maps of 

information resources 
• modeling user intent based on observed 

actions 
• recommending useful information through 

implicit relevance feedback 
An IRIA-based intelligent information 

management system acts as an autonomous 
assistant to a user working on a task, working 
unobtrusively in the background to learn both 
the user’s interests and the resources available to 
satisfy those interests.  This approach has proven 
effective at information retrieval in a variety of 
applications [5, 6]. 

2.2. Context-Sensitive Asynchronous 
Memory 
The core of IRIA is based on a model called 
context-sensitive asynchronous memory, an 
approach to the problem of managing 



information access to large knowledge bases 
inspired by cognitive science research in human 
memory and expert performance [5].   

Context-sensitive asynchronous memory is a 
semantic network / spreading activation 
approach similar in many ways to the declarative 
portion of the ACT architecture [1].  In a 
semantic network approach, knowledge is 
represented as a graph of nodes and links.  
Spreading activation uses this graph structure for 
memory retrieval: the source nodes in a query 
are given a certain amount of dynamic weight, 
or “activation”, which is then iteratively 
propagated out along the links to other nodes in 
the network. Memory items are ultimately 
retrieved based on a function of their overall 
activation level.   

Spreading activation has built-in limits in 
the form of fanout decay and propagation 
thresholds.  The amount of activation propagated 
from a node decreases in inverse proportion to 
the node’s fanout, or number of links, thus 
keeping the total amount of propagating 
activation constant.  In some systems, activation 
stops propagating at some threshold, limiting the 
number of nodes that can be activated by a given 
source node [7].   

The context-sensitive asynchronous memory 
approach builds upon this foundation, but is 
distinguished by the following features: 
• a rich network representation in which 

each link between nodes instantiates some 
relation which is also a node 

• a context-directed spreading activation 
process in which the activation of relation 
nodes alters the propagation of activation 

• an asynchronous retrieval monitor which 
maintains a set of active retrieval requests 
which it constantly and incrementally 
attempts to satisfy 
The first two features work together to 

enable the system to spend its search effort on 
parts of the knowledge base likely to be 
relevant; the second two features work together 
to enable the system to interleave memory 
search with other processes, permitting it to 
update its search with new information from 
reasoning. 

Rather than computing activation directly 
from the influence of a set of activation sources, 
the context-directed spreading activation 
approach computes activation changes, or 

perturbance, from a list of cues maintained by 
the retrieval monitor. Perturbance propagates out 
into the network and cumulatively adds to 
activation, which in turn slowly decays.  The list 
of cues itself is dynamic, changing over time as 
new information is added from reasoning.  As a 
result, the activations in the network are 
influenced both by the history of cues seen and 
the current set of cues, enabling the system to 
shift the areas of the network it examines over 
time as the reasoning context changes. 

The context-sensitive asynchronous memory 
architecture has been successfully applied to 
pure memory retrieval, to planning, to story 
understanding, and, in the IRIA system, to 
information retrieval. 

2.3. The IRIA Architecture 
IRIA builds upon the context-sensitive 
asynchronous memory approach by embedding 
it in a knowledge harvesting and interface 
monitoring architecture.   

An IRIA system is a harvesting system: it 
exploits an existing data source, such as a search 
engine or database query interface, for the brute 
force work of indexing and searching the web.  
This metasearch approach enables IRIA to 
dynamically build a “semantic map”— a subset 
of the available information relevant to the 
user’s interests.  

An IRIA system is an interface monitor: it 
presents a view of the underlying data source as 
summarized by the semantic map, and monitors 
the actions users perform to inspect information 
in that map to develop a model of the user’s 
intent.  This intent model enables IRIA to 
dynamically track a user’s interests in real time.  

Together, these two faces of IRIA provide 
the necessary inputs to enable the context-
sensitive asynchronous memory process to 
recommend useful information.  The semantic 
map is represented directly within the rich 
semantic network representation of the context-
sensitive asynchronous memory system, and the 
user intent model feeds cues to the asynchronous 
retrieval monitor. This enables an IRIA system 
to recommend information in the map to the 
user, or to draw new information in if the current 
map is insufficient.  

The combined effect is a process of 
dynamic, implicit relevance feedback, in which 
user actions inform the system’s knowledge of 
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Figure 1. Architecture of IRIA

 user’s interests and enable it to proactively 
ommend additional relevant information.  
e overall IRIA system architecture is shown 
Figure 1. 

. Sources of Power 
e effectiveness of the IRIA approach depends 
 both internal and external factors.  

Data Input. The most important factor is 
ternal: quality data input.  A typical IRIA 
tem is deployed as an information research 
tem augmenting a user’s ability to navigate 
e large information resource, such as the 

eb or an intelligence database. Such a 
nfiguration will harvest data from some data 
rce (such as a web search engine or database 

ery mechanism) and observe actions at the 
r’s interface (for example, a web search 
ults form or an intelligence browser). The 
ectiveness of the harvesting algorithm used to 
nstruct the semantic map and the 
ormativeness of the actions which can be 
served to model intent will dominate the 
hitecture’s ability to deliver relevant 
ormation. 

Algorithmic Factors. However, assuming 
t an IRIA system has a quality data source 

d can observe meaningful user actions, the 
ality of recommendations are then dominated 
 internal factors — the semantic map and 
eading activation algorithms themselves.   
These algorithms have a number of 

vantages.  Their context-sensitive nature 
ables the network to be effectively partitioned 
 different queries.  Unlike traditional systems 

which propagate spreading activation one-way 
from terms to documents and do not feed 
activation from one query into another, the 
CDSA approach actively exploits the patterns of 
activation which arise by allowing activation to 
reverberate through the network as a query’s 
specification changes or when more than one 
query is active at one time. 

While these algorithms have been shown to 
be an effective memory retrieval architecture for 
a variety of circumstances, information retrieval 
has peculiar properties which pose special 
challenges for the use of semantic networks and 
spreading activation for information retrieval. 

3. Spreading Activation for IR 
Spreading activation for information retrieval 
has a long history.  While some interesting 
results have been demonstrated [4, 11], 
problems have been uncovered which limit the 
application of spreading activation to 
production-scale information retrieval systems.  
These issues arise in both the semantic networks 
which are the foundation for spreading 
activation and in the spreading activation 
process itself. 

3.1. Properties of Information Retrieval 
One of the most common forms of information 
retrieval is the problem of finding a document in 
response to a query.  Documents and queries can 
take many forms, from short clippings to War 
and Peace and from one-word Web queries to 
complex logical specifications. Often, but not 
always, documents and queries can be 



effectively parsed apart into terms, and often, 
but not always, terms found in a document are 
evidence that the document is relevant to that 
query.  

One of the most important features of 
information retrieval within this framework is 
that document collections can be very large. 
Well-known test collections contain tens of 
thousands or millions of documents spread out 
over gigabytes [2].  Natural collections are still 
larger: the Web contains over a billion 
documents [9] and some corporate intranets can 
be even larger. 

Even with a harvesting and metasearch 
approach such as that used in the IRIA system, 
semantic networks and spreading activation can 
encounter problems with collections of this size.  
These issues affect both the construction of these 
networks and how they are searched. 

3.2. Challenges for Semantic Networks 
First and foremost, semantic networks are 
complex data structures with significant 
construction and storage requirements.  
Traditional inverted indices and vector-space 
representations can be directly constructed from 
document texts and connections between terms 
and documents are represented implicitly within 
parsimonious data structures.  In contrast, 
semantic networks require some kind of 
ontology or content theory of how documents 
and terms are related.  Whether this ontology is 
simple [12] or complex [4] it can make 
constructing the network a more complex 
proposition than a simple vector representation.  
Furthermore, a rich semantic network structure 
requires explicitly representing links between 
items in the network, which can be more space 
expensive than a more restricted representation.  

3.3. Challenges for Spreading Activation.   
Spreading activation in turn has its own 
problems for information retrieval.  Salton 
examined a simple semantic network for 
information retrieval, in which documents and 
terms are nodes linked when a document 
contains a term, and showed that it captures only 
part of the information found in the typical tfidf 
term weighting used in many vector-space 
information retrieval systems [12].  As a result, 
the traditional computation of spreading 
activation with fanout at each node [7] 

automatically computes inverse document 
frequency, but does not directly represent term 
frequency, and as a result this naïve formulation 
does not perform as well as the traditional vector 
space representation [12].   Of course, a richer 
network structure or different link weights could 
address some of these concerns. 

3.4. Challenges for Context-Directed 
Spreading Activation.   
Context-directed spreading activation, the core 
of the IRIA approach, attempts to address the 
scalability limits of traditional spreading 
activation by contextually guided flow of 
activation. Activation thresholds are key to 
context guidance, enabling the system to not 
spend effort perturbing the activations of 
irrelevant portions of the knowledge base.  
When thresholding is applied to the information 
retrieval domain it causes ‘automatic 
stopwording’ of high-frequency terms, such as 
‘the’ and ‘and’ which appear in almost every 
document.   

Unfortunately, as the semantic map grows in 
size, the fanout of useful words will grow as 
well.  This limits the amount of information 
which can be drawn into the semantic map in 
response to a single query on any given topic.  
This furthermore limits the map as it 
accumulates over time: if a user has a persistent 
interest in a single  topic, words about that topic 
will increase in frequency and will become 
stopworded.  Ultimately, this can make a system 
effectively ‘blind’ to topics that the user is 
interested in — precisely opposite the intent of 
the approach. 

3.5. Speed-Accuracy Tradeoffs 
Essentially, this limit of spreading activation is a 
speed-accuracy tradeoff.  Fanout and thresholds 
are employed in spreading activation to place an 
upper bound on the memory retrieval 
computation performed for any one piece of 
evidence (any one cue). In both traditional and 
context-directed spreading activation, this 
threshold acts to prevent spread of activation 
when the amount of activation spread is very 
small and will have little effect on the relative 
weights of items in the knowledge base and 
hence little effect on retrieval.  In other words, 
spreading activation with fanout thresholds 
reduces retrieval cost at the price of a slight 
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Figure 2. Prototype IRIA Interface 
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Figure 3. Prototype Scaleup of 

Recommendation Cost 

ction in accuracy.  
herefore, spreading activation with fanout 

holds becomes potentially less accurate for 
mation retrieval tasks as document 
ctions of increasing size, but this accuracy 
off itself is scalable: the threshold cutoff 
be changed at the price of increased 
utational effort. 

ealing with Scalability 
IRIA project has applied a variety of 
iques to deal with these scalability issues. 
e techniques include developing 
sentations and algorithms which make it 
ble to use semantic networks and spreading 
ation for information retrieval, as well as 
iques to address the specific limitations of 
ding activation and context-directed 
ding activation on larger document sizes. 

Representations and Algorithms 
algorithms and representations used in the 
 project have developed over time. The 
nal IRIA prototype was developed in Lisp, 
yed as an extension to the CL-HTTP web 
r [10], and accessed through a browser-

d interface. The prototype uses a metasearch 
m to execute a query on existing Web 
h engines (e.g., Altavista, Yahoo, etc.) and 

summarizes the returned hits into a 
ledge map. The prototype application 

ays search results on the left and the user’s 
nt selected result in the center.  As the user 
ses, IRIA is reminded of pages and displays 
 dynamically computed results on the right, 

enabling users to quickly focus on relevant 
results (Figure 2). 

Prototype Performance. This prototype 
had a number of flaws.  Its semantic map 
consumed a large amount of memory, requiring 
megabytes worth of storage per thousand nodes. 
Its raw speed and performance were poor, taking 
several seconds to harvest information and 
several seconds to perform recommendations. 
Furthermore, the cost of recommendations 
increased with knowledge base size.  While this 
scaleup had a low constant factor it still was a 
linear complexity in knowledge base size for an 
algorithm which was designed for constant-time 
complexity in knowledge base size.  Figure 3 
shows a typical recommendation time curve for 
the IRIA Lisp prototype, charting the number of 
milliseconds necessary to compute a 
recommendation cycle against the total number 
of nodes in the knowledge base. 

Production Version. Since the prototype, 
the IRIA system has been reimplemented.  The 
new edition of IRIA, marketed under the name 
“Enkion”, is still accessed through a browser-
based interface similar to Figure 2 but is now 
implemented in Java and deployed on an 
Enterprise Java Beans application server.  

The production version of IRIA had a 
variety of features which addressed the flaws of 
the prototype.  The semantic map employed a 
new representation which eschewed explicit 
representation of nodes as Java objects as much 
as possible in favor of arrays of connections, 
resulting in a hundredfold decrease in size.  The 
spreading activation algorithms were also 
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Figure 5. Production Scaleup of  
Recommendation Quality 

updated, resulting in a tenfold to a hundredfold 
increase in recommendation speed. 

4.2. Assessing Scalability  
To address the question of scaleup of 
recommendation cost, we conducted a 
preliminary experiment testing how 
recommendation cost and quality were affected 
as the amount of information harvested into a 
map increased.  

Method. The method for this experiment 
consisted of simulating a query-recommendation 
episode in a web search application.  In this 
simulated episode, the system was presented 
with a query and was then allowed to harvest 
information related to that query into the 
semantic map from a web search engine 
(AltaVista).  The system was then presented 
with topical information to seed the user intent 
model and then was allowed to generate 
recommendations.  This simulates a user who 
enters an underspecified query (such as 
“centaur”) but who is really interested in more 
specific information (such as the Centaur upper-
stage rocket launch vehicle). 

The dependent variables in this experiment 
were the choice of query terms, the number of 
search results harvested and the choice of topic.  
For simplicity, the initial assay chose one query 
term (“centaur”), and chose three topics relevant 
to the query term (“rocket”, “asteroid”, 
“mythology”).  The harvest size was allowed to 
vary from 10 to 1000 items. 

The independent variables measured were 
time to harvest results, time to recommend 
results, and quality of recommendations.  

Harvest result times and recommendation times 
were measured in milliseconds through 
lightweight profiling code embedded into the 
recommendation core.  The system was tested 
on the Sun Java 1.2.2 platform hosted on a 
500Mhz Pentium III with 256Mb RAM running 
Windows NT. 

For simplicity in the initial assay, and to 
reduce the possibility of human error, 
recommendation quality was measured 
comparatively against a traditional vector space 
model.  In this test, the quality of a 
recommendation was measured by its vector 
space similarity to the terms in the topic stored 
in the user intent model, and the aggregate 
quality of recommendations was computed by 
averaging this score over the top ten 
recommendations of produced by IRIA to the 
topic terms provided as part of the user intent 
model.   

Obviously, this method is limited — if the 
vector space and context-directed spreading 
activation model “disagree”, this metric will 
penalize the CDSA model even if a human 
might judge the CDSA recommendations to be 
of high quality. However, this eliminated the 
possibility that human judges’ subjective views 
could distort the results, and provided an 
inexpensive “ballpark” metric that could be 
rapidly computed over a wide range of harvest 
sizes.  

The hypothesis tested in these experiments 
were that harvest time would increase linearly 
with harvest size, recommendation time would 
remain fixed with harvest size, and 
recommendation quality would initially increase 



with harvest size, but might experience a dropoff 
as fanout of key words increased 

Results. Speed results were as predicted.  
Harvest time increased approximately linearly 
from 0.02 seconds for 10 items to 0.93 seconds 
for 1000 items (averaged across all runs).  
Recommendation time was difficult to measure 
because the time taken by each recommendation 
cycle was often less than the granularity of the 
profiling code (10ms); however, no significant 
increase was detected as the knowledge base 
size increased.  Figure 4 plots harvest speed 
normalized against the longest harvest time in 
dark grey and presents recommendation time as 
a percentage of the longest harvest time in white. 

Quality results were also as predicted. While 
each individual topic had a different effect on 
recommendation quality, averaged across all 
three topics there was a definite increase in 
quality of recommendations up to about 500 
harvested items.  Beyond 500 items, a drop in 
quality was observed (at least as measured in 
terms of the vector space similiarity of 
recommendations to the target topic).  Figure 5 
illustrates this phenomenon. 

Discussion. Analysis of this behavior is still 
ongoing, but by examining the properties of the 
IRIA algorithms, we can make educated guesses 
about the conditions under which a quality 
dropoff will be observed.  

The configuration of the IRIA system used 
in these experiments imposes a fanout threshold 
which enables each cue to activate 
approximately 1000 nodes (initial activation 1.0, 
threshold 0.001). As the number of documents in 
the harvest increases, words which appear in 
many documents will be contribute less and less 
to the ordering of the recommendations.   

Furthermore, recommendations in an IRIA 
system depend on activation reverberating 
through a network, which as a consequence must 
involve activation which has been diluted by 
fanout.  As the fanout of key nodes at later 
stages increases, they too may become 
thresholded, causing entire sections of the 
network to effectively “drop” from their original 
positions in the recommendations. 

5. Conclusion 
Further analysis of the scaling properties of 

the production IRIA system are underway, using 
additional queries and topics and additional data 

sets with larger harvest values.  While this work 
is ongoing, we can point to ways to address the 
limitations this research has uncovered in 
applying spreading activation to information 
retrieval.  This could include revised 
parameterizations which lower the propagation 
threshold or increase the initial activation of 
certain terms, or revised network structures 
which take high-fanout words related to user 
interests and break them apart into lower-fanout 
concepts using structures such as redundant 
discrimination nets [8].  
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